Présenté par Léa BREUL sous la direction du Dr Nicolas COURTIN s’intéressant aux nouvelles thérapeutiques médicamenteuses de l’insuffisance cardiaque et leur gestion en péri-opératoire.
Présenté en Décembre 2024.
Le résumé sous forme pdf :
Gestion-des-ttt-ICLa présentation disponible au téléchargement.
Références :
[1] McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of
the ESC. Eur Heart J 2021;42:3599–726. https://doi.org/10.1093/eurheartj/ehab368.
[2] Marx N, Federici M, Schütt K, Müller-Wieland D, Ajjan RA, Antunes MJ, et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes: Developed by the task force on the management of cardiovascular disease in patients with diabetes of the European Society of Cardiology (ESC). Eur Heart J 2023;44:4043–140. https://doi.org/10.1093/eurheartj/ehad192.
[3] Bozkurt B, Coats AJS, Tsutsui H, Abdelhamid CM, Adamopoulos S, Albert N, et al. Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure: Endorsed by the Canadian Heart Failure Society, Heart Failure Association of India, Cardiac Society of Australia and New Zealand, and Chinese Heart Failure Association. Eur J Heart Fail 2021;23:352–80. https://doi.org/10.1002/ejhf.2115.
[4] Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation 2020;141:e139–596. https://doi.org/10.1161/CIR.0000000000000757.
[5] Conrad N, Judge A, Tran J, Mohseni H, Hedgecott D, Crespillo AP, et al. Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals. Lancet 2018;391:572–80. https://doi.org/10.1016/S0140-6736(17)32520-5.
[6] GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018;392:1789–858. https://doi.org/10.1016/S0140-6736(18)32279-7.
[7] van Riet EES, Hoes AW, Wagenaar KP, Limburg A, Landman MAJ, Rutten FH. Epidemiology of heart failure: the prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review. Eur J Heart Fail 2016;18:242–52. https://doi.org/10.1002/ejhf.483.
[8] Chioncel O, Lainscak M, Seferovic PM, Anker SD, Crespo-Leiro MG, Harjola V-P, et al. Epidemiology and one-year outcomes in patients with chronic heart failure and preserved, midrange and reduced ejection fraction: an analysis of the ESC Heart Failure Long-Term Registry. Eur J Heart Fail 2017;19:1574–85. https://doi.org/10.1002/ejhf.813.
[9] Halliday BP, Wassall R, Lota AS, Khalique Z, Gregson J, Newsome S, et al. Withdrawal of pharmacological treatment for heart failure in patients with recovered dilated cardiomyopathy (TRED-HF): an open-label, pilot, randomised trial. Lancet 2019;393:61–73.
https://doi.org/10.1016/S0140-6736(18)32484-X.
[10]Gerber Y, Weston SA, Redfield MM, Chamberlain AM, Manemann SM, Jiang R, et al. A contemporary appraisal of the heart failure epidemic in Olmsted County, Minnesota, 2000 to 2010. JAMA Intern Med 2015;175:996–1004. https://doi.org/10.1001/jamainternmed.2015.0924.
[11] Barasa A, Schaufelberger M, Lappas G, Swedberg K, Dellborg M, Rosengren A. Heart failure in young adults: 20-year trends in hospitalization, aetiology, and case fatality in Sweden. Eur Heart J 2014;35:25–32. https://doi.org/10.1093/eurheartj/eht278.
[12] Crespo-Leiro MG, Metra M, Lund LH, Milicic D, Costanzo MR, Filippatos G, et al. Advanced heart failure: a position statement of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2018;20:1505–35. https://doi.org/10.1002/ejhf.1236.
[13]McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med 2019;381:1995–2008. https://doi.org/10.1056/NEJMoa1911303.
[14] Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N Engl J Med 2020;383:1413–24. https://doi.org/10.1056/NEJMoa2022190.
[15] Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M, et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N Engl J Med 2021;385:1451–61. https://doi.org/10.1056/NEJMoa2107038.
[16] Solomon SD, McMurray JJV, Claggett B, de Boer RA, DeMets D, Hernandez AF, et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N Engl J Med 2022;387:1089–98. https://doi.org/10.1056/NEJMoa2206286.
[17] Hammill BG, Curtis LH, Bennett-Guerrero E, O’Connor CM, Jollis JG, Schulman KA, et al. Impact of heart failure on patients undergoing major noncardiac surgery. Anesthesiology 2008;108:559–2010. https://doi.org/10.1097/ALN.0b013e31816725ef.
[18] Lerman BJ, Popat RA, Assimes TL, Heidenreich PA, Wren SM. Association of Left Ventricular Ejection Fraction and Symptoms With Mortality After Elective Noncardiac Surgery Among Patients With Heart Failure. JAMA 2019;321:572–9. https://doi.org/10.1001/jama.2019.0156.
[19] Smilowitz NR, Banco D, Katz SD, Beckman JA, Berger JS. Association between heart failure and perioperative outcomes in patients undergoing non-cardiac surgery. Eur Heart J Qual Care Clin Outcomes 2021;7:68–75. https://doi.org/10.1093/ehjqcco/qcz066.
[20] Lee TH, Marcantonio ER, Mangione CM, Thomas EJ, Polanczyk CA, Cook EF, et al. Derivation and prospective validation of a simple index for prediction of cardiac risk of major noncardiac surgery. Circulation 1999;100:1043–9. https://doi.org/10.1161/01.cir.100.10.1043.
[21] Andersson C, Wissenberg M, Jørgensen ME, Hlatky MA, Mérie C, Jensen PF, et al. Age-specific performance of the revised cardiac risk index for predicting cardiovascular risk in elective noncardiac surgery. Circ Cardiovasc Qual Outcomes 2015;8:103–8.
https://doi.org/10.1161/CIRCOUTCOMES.114.001298.
[22] Halvorsen S, Mehilli J, Cassese S, Hall TS, Abdelhamid M, Barbato E, et al. 2022 ESC Guidelines on cardiovascular assessment and management of patients undergoing non-cardiac surgery: Developed by the task force for cardiovascular assessment and management of patients undergoing non-cardiac surgery of the European Society of Cardiology (ESC) Endorsed by the
European Society of Anaesthesiology and Intensive Care (ESAIC). Eur Heart J 2022;43:3826–924. https://doi.org/10.1093/eurheartj/ehac270.
[23] Thompson A, Fleischmann KE, Smilowitz NR, de las Fuentes L, Mukherjee D, Aggarwal NR, et al. 2024 AHA/ACC/ACS/ASNC/HRS/SCA/SCCT/SCMR/SVM Guideline for Perioperative Cardiovascular Management for Noncardiac Surgery: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2024;150:e351–2010. https://doi.org/10.1161/CIR.0000000000001285.
[24] Asehnoune K, Aubrun F, Aveline C, Beloeil H. Gestion périopératoire des traitements chroniques et dispositifs médicaux. Anti-infectieux, immunosuppresseurs – La SFAR. Société Française d’Anesthésie et de Réanimation 2009. https://dev.sfar.org/gestion-perioperatoire-destraitements-chroniques-et-dispositifs-medicaux-anti-infectieux-immunosuppresseurs/ (accessed March 25, 2025).
[25] Derumeaux G, Piriou V. Prise en charge du coronarien opéré en chirurgie non cardiaque – La SFAR. Société Française d’Anesthésie et de Réanimation 2011. https://dev.sfar.org/prise-encharge-du-coronarien-opere-en-chirurgie-non-cardiaque/ accessed March 25, 2025).
[26] Delignette M-C, Chaffard C, Orion M, Blet A. Gestion périopératoire des nouveaux traitements médicamenteux de l’insuffisance cardiaque. //www.empremium.com/data/revues/12797960/v28i5/S1279796024001141/ 2024. https://doi.org/10.1016/j.pratan.2024.09.003.
[27] Ojaimi RE, Cheisson G, Cosson E, Ichai C, Jacqueminet S, Nicolescu-Catargi B, et al. Recent advances in perioperative care of patients using new antihyperglycaemic drugs and devices dedicated to diabetes. Anaesth Crit Care Pain Med 2025;44:101468.
https://doi.org/10.1016/j.accpm.2024.101468.
[28] McMurray JJV, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensinneprilysin inhibition versus enalapril in heart failure. N Engl J Med 2014;371:993–1004. https://doi.org/10.1056/NEJMoa1409077.
[29] Nougué H, Pezel T, Picard F, Sadoune M, Arrigo M, Beauvais F, et al. Effects of sacubitril/valsartan on neprilysin targets and the metabolism of natriuretic peptides in chronic heart failure: a mechanistic clinical study. Eur J Heart Fail 2019;21:598–605.
https://doi.org/10.1002/ejhf.1342.
[30] Nougué H, Picard F, Cohen-Solal A, Logeart D, Launay J-M, Vodovar N. Impact of sacubitril/valsartan on cardiac and systemic hypoxia in chronic heart failure. iScience 2024;27:108520. https://doi.org/10.1016/j.isci.2023.108520.
[31] ENTRESTO (sacubitril, valsartan) : nouvelle association fixe dans le traitement de l’insuffisance cardiaque chronique. VIDAL n.d. https://www.vidal.fr/actualites/19041-entresto-sacubitrilvalsartan-nouvelle-association-fixe-dans-le-traitement-de-l-insuffisance-cardiaquechronique.html (accessed March 7, 2025).
[32] Seferovic JP, Claggett B, Seidelmann SB, Seely EW, Packer M, Zile MR, et al. Effect of sacubitril/valsartan versus enalapril on glycaemic control in patients with heart failure and diabetes: a post-hoc analysis from the PARADIGM-HF trial. Lancet Diabetes Endocrinol 2017;5:333–40. https://doi.org/10.1016/S2213-8587(17)30087-6.
[33] Wijkman MO, Claggett B, Vaduganathan M, Cunningham JW, Rørth R, Jackson A, et al. Effects of sacubitril/valsartan on glycemia in patients with diabetes and heart failure: the PARAGON-HF and PARADIGM-HF trials. Cardiovasc Diabetol 2022;21:110. https://doi.org/10.1186/s12933-022- 01545-1.
[34] Damman K, Gori M, Claggett B, Jhund PS, Senni M, Lefkowitz MP, et al. Renal Effects and Associated Outcomes During Angiotensin-Neprilysin Inhibition in Heart Failure. JACC Heart Fail 2018;6:489–98. https://doi.org/10.1016/j.jchf.2018.02.004.
[35] Desai AS, Vardeny O, Claggett B, McMurray JJV, Packer M, Swedberg K, et al. Reduced Risk of Hyperkalemia During Treatment of Heart Failure With Mineralocorticoid Receptor Antagonists by Use of Sacubitril/Valsartan Compared With Enalapril: A Secondary Analysis of the PARADIGM-HF Trial. JAMA Cardiol 2017;2:79–85. https://doi.org/10.1001/jamacardio.2016.4733.
[36] Vardeny O, Claggett B, Kachadourian J, Desai AS, Packer M, Rouleau J, et al. Reduced loop diuretic use in patients taking sacubitril/valsartan compared with enalapril: the PARADIGM-HF trial. Eur J Heart Fail 2019;21:337–41. https://doi.org/10.1002/ejhf.1402.
[37] Solomon SD, McMurray JJV, Anand IS, Ge J, Lam CSP, Maggioni AP, et al. Angiotensin-Neprilysin Inhibition in Heart Failure with Preserved Ejection Fraction. N Engl J Med 2019;381:1609–20. https://doi.org/10.1056/NEJMoa1908655.
[38] Velazquez EJ, Morrow DA, DeVore AD, Duffy CI, Ambrosy AP, McCague K, et al. AngiotensinNeprilysin Inhibition in Acute Decompensated Heart Failure. N Engl J Med 2019;380:539–48. https://doi.org/10.1056/NEJMoa1812851.
[39] Wachter R, Senni M, Belohlavek J, Straburzynska-Migaj E, Witte KK, Kobalava Z, et al. Initiation of sacubitril/valsartan in haemodynamically stabilised heart failure patients in hospital or early after discharge: primary results of the randomised TRANSITION study. Eur J Heart Fail 2019;21:998–1007. https://doi.org/10.1002/ejhf.1498.
[40] Vardeny O, Claggett B, Kachadourian J, Pearson SM, Desai AS, Packer M, et al. Incidence, Predictors, and Outcomes Associated With Hypotensive Episodes Among Heart Failure Patients Receiving Sacubitril/Valsartan or Enalapril: The PARADIGM-HF Trial (Prospective Comparison of Angiotensin Receptor Neprilysin Inhibitor With Angiotensin-Converting Enzyme Inhibitor to
Determine Impact on Global Mortality and Morbidity in Heart Failure). Circ Heart Fail 2018;11:e004745. https://doi.org/10.1161/CIRCHEARTFAILURE.117.004745.
[41] Galo J, Celli D, Colombo R. Effect of Sacubitril/Valsartan on Neurocognitive Function: Current Status and Future Directions. Am J Cardiovasc Drugs 2021;21:267–70. https://doi.org/10.1007/s40256-020-00445-7.
[42] Novartis Pharmaceuticals. A Multicenter, Randomized, Double-blind, Active-controlled Study to Evaluate the Effects of LCZ696 Compared to Valsartan on Cognitive Function in Patients With Chronic Heart Failure and Preserved Ejection Fraction. clinicaltrials.gov; 2024.
[43] Gestion péri-opératoire des nouveaux traitements à visée cardiaque pour une chirurgie non cardiaque. 2024.
[44] Legrand M, Falcone J, Cholley B, Charbonneau H, Delaporte A, Lemoine A, et al. Continuation vs Discontinuation of Renin-Angiotensin System Inhibitors Before Major Noncardiac Surgery: The Stop-or-Not Randomized Clinical Trial. JAMA 2024;332:970–8.
https://doi.org/10.1001/jama.2024.17123.
[45] DeFronzo RA, Norton L, Abdul-Ghani M. Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nat Rev Nephrol 2017;13:11–26. https://doi.org/10.1038/nrneph.2016.170.
[46] Heerspink HJ, Perkins BA, Fitchett DH, Husain M, Cherney DZ. Sodium Glucose Cotransporter 2 Inhibitors in the Treatment of Diabetes Mellitus. Circulation 2016;134:752–72. https://doi.org/10.1161/CIRCULATIONAHA.116.021887.
[47] Liakos A, Karagiannis T, Athanasiadou E, Sarigianni M, Mainou M, Papatheodorou K, et al. Efficacy and safety of empagliflozin for type 2 diabetes: a systematic review and meta-analysis. Diabetes Obes Metab 2014;16:984–93. ttps://doi.org/10.1111/dom.12307.
[48] Xu B, Li S, Kang B, Zhou J. The current role of sodium-glucose cotransporter 2 inhibitors in type 2 diabetes mellitus management. Cardiovasc Diabetol 2022;21:83. https://doi.org/10.1186/s12933-022-01512-w.
[49] Ridderstråle M, Andersen KR, Zeller C, Kim G, Woerle HJ, Broedl UC, et al. Comparison of empagliflozin and glimepiride as add-on to metformin in patients with type 2 diabetes: a 104- week randomised, active-controlled, double-blind, phase 3 trial. Lancet Diabetes Endocrinol 2014;2:691–700. https://doi.org/10.1016/S2213-8587(14)70120-2.
[50] Rosenstock J, Jelaska A, Frappin G, Salsali A, Kim G, Woerle HJ, et al. Improved glucose control with weight loss, lower insulin doses, and no increased hypoglycemia with empagliflozin added to titrated multiple daily injections of insulin in obese inadequately controlled type 2 diabetes. Diabetes Care 2014;37:1815–23. https://doi.org/10.2337/dc13-3055.
[51] Darmon P, Bauduceau B, Bordier L, Detournay B, Gautier J-F, Gourdy P, et al. Prise de position de la Société Francophone du Diabète (SFD) sur les stratégies d’utilisation des traitements antihyperglycémiants dans le diabète de type 2 – 2023. /www.empremium.com/data/revues/19572557/v17i8/S1957255723002298/ 2023. https://doi.org/10.1016/j.mmm.2023.10.007.
[52] Stratégie thérapeutique du patient vivant avec un diabète de type 2. Haute Autorité de Santé n.d. https://www.has-sante.fr/jcms/p_3191108/fr/strategie-therapeutique-du-patient-vivantavec-un-diabete-de-type-2 (accessed April 6, 2025).
[53] Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou F-F, et al. Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med 2020;383:1436–46. https://doi.org/10.1056/NEJMoa2024816.
[54] Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med 2016;375:323–34. https://doi.org/10.1056/NEJMoa1515920.
[55] Tharmaraja T, Ho JSY, Sia C-H, Lim N-A, Chong YF, Lim AYL, et al. Sodium-glucose cotransporter 2 inhibitors and neurological disorders: a scoping review. Ther Adv Chronic Dis 2022;13:20406223221086996. https://doi.org/10.1177/20406223221086996.
[56] Wu C-Y, Iskander C, Wang C, Xiong LY, Shah BR, Edwards JD, et al. Association of Sodium-Glucose Cotransporter 2 Inhibitors With Time to Dementia: A Population-Based Cohort Study. Diabetes Care 2023;46:297–304. https://doi.org/10.2337/dc22-1705.
[57] Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-ofthe-art review. Diabetologia 2018;61:2108–17. https://doi.org/10.1007/s00125-018-4670-7.
[58] Pandey AK, Bhatt DL, Pandey A, Marx N, Cosentino F, Pandey A, et al. Mechanisms of benefits of sodium-glucose cotransporter 2 inhibitors in heart failure with preserved ejection fraction. Eur Heart J 2023;44:3640–51. ttps://doi.org/10.1093/eurheartj/ehad389.
[59] Lambers Heerspink HJ, de Zeeuw D, Wie L, Leslie B, List J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab 2013;15:853–62. https://doi.org/10.1111/dom.12127.
[60] Chilton R, Tikkanen I, Cannon CP, Crowe S, Woerle HJ, Broedl UC, et al. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab 2015;17:1180–93. https://doi.org/10.1111/dom.12572.
[61] Baker WL, Buckley LF, Kelly MS, Bucheit JD, Parod ED, Brown R, et al. Effects of Sodium-Glucose Cotransporter 2 Inhibitors on 24-Hour Ambulatory Blood Pressure: A Systematic Review and Meta-Analysis. J Am Heart Assoc 2017;6:e005686. https://doi.org/10.1161/JAHA.117.005686.
[62] Ferrannini E, Mark M, Mayoux E. CV Protection in the EMPA-REG OUTCOME Trial: A “Thrifty Substrate” Hypothesis. Diabetes Care 2016;39:1108–14. https://doi.org/10.2337/dc16-0330.
[63] Packer M, Anker SD, Butler J, Filippatos G, Zannad F. Effects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure: Proposal of a Novel Mechanism of Action. JAMA Cardiology 2017;2:1025–9. ttps://doi.org/10.1001/jamacardio.2017.2275.
[64] Kang S, Verma S, Hassanabad AF, Teng G, Belke DD, Dundas JA, et al. Direct Effects of Empagliflozin on Extracellular Matrix Remodelling in Human Cardiac Myofibroblasts: Novel Translational Clues to Explain EMPA-REG OUTCOME Results. Can J Cardiol 2020;36:543–53. https://doi.org/10.1016/j.cjca.2019.08.033.
[65] Bao Y, Hu Y, Shi M, Zhao Z. SGLT2 inhibitors reduce epicardial adipose tissue more than GLP-1 agonists or exercise interventions in patients with type 2 diabetes mellitus and/or obesity: A systematic review and network meta-analysis. Diabetes Obes Metab 2025;27:1096–112. https://doi.org/10.1111/dom.16107.
[66] Wu P, Wen W, Li J, Xu J, Zhao M, Chen H, et al. Systematic Review and Meta-Analysis of Randomized Controlled Trials on the Effect of SGLT2 Inhibitor on Blood Leptin and Adiponectin Level in Patients with Type 2 Diabetes. Horm Metab Res 2019;51:487–94.
https://doi.org/10.1055/a-0958-2441.
[67] Elrakaybi A, Laubner K, Zhou Q, Hug MJ, Seufert J. Cardiovascular protection by SGLT2 inhibitors – Do anti-inflammatory mechanisms play a role? Mol Metab 2022;64:101549. https://doi.org/10.1016/j.molmet.2022.101549.
[68] FORXIGA 10 mg cp pellic. VIDAL n.d. https://www.vidal.fr/medicaments/forxiga-10-mg-cp-pellic123958.html (accessed March 7, 2025).
[69] JARDIANCE 10 mg cp pellic. VIDAL n.d. https://www.vidal.fr/medicaments/jardiance-10-mg-cppellic-144138.html (accessed March 7, 2025).
[70] Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med 2015;373:2117–28. https://doi.org/10.1056/NEJMoa1504720.
[71] Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2019;380:347–57. https://doi.org/10.1056/NEJMoa1812389.
[72] Kosiborod MN, Jhund PS, Docherty KF, Diez M, Petrie MC, Verma S, et al. Effects of Dapagliflozin on Symptoms, Function, and Quality of Life in Patients With Heart Failure and Reduced Ejection Fraction: Results From the DAPA-HF Trial. Circulation 020;141:90–9. https://doi.org/10.1161/CIRCULATIONAHA.119.044138.
[73] Butler J, Anker SD, Filippatos G, Khan MS, Ferreira JP, Pocock SJ, et al. Empagliflozin and healthrelated quality of life outcomes in patients with heart failure with reduced ejection fraction: the EMPEROR-Reduced trial. Eur Heart J 2021;42:1203–12.
https://doi.org/10.1093/eurheartj/ehaa1007.
[74] Vaduganathan M, Docherty KF, Claggett BL, Jhund PS, de Boer RA, Hernandez AF, et al. SGLT-2 inhibitors in patients with heart failure: a comprehensive meta-analysis of five randomised controlled trials. Lancet 2022;400:757–67. ttps://doi.org/10.1016/S0140-6736(22)01429-5.
[75] McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2023;44:3627–39. https://doi.org/10.1093/eurheartj/ehad195.
[76] Desouza CV, Gupta N, Patel A. Cardiometabolic Effects of a New Class of Antidiabetic Agents. Clin Ther 2015;37:1178–94. https://doi.org/10.1016/j.clinthera.2015.02.016.
[77] Monami M, Nardini C, Mannucci E. Efficacy and safety of sodium glucose co-transport-2 inhibitors in type 2 diabetes: a meta-analysis of randomized clinical trials. Diabetes Obes Metab 2014;16:457–66. https://doi.org/10.1111/dom.12244.
[78] Cao Y, Li P, Li Y, Han Y. Sodium-glucose cotransporter-2 inhibitors in heart failure: an updated meta-analysis. ESC Heart Fail 2022;9:1942–53. https://doi.org/10.1002/ehf2.13905.
[79] Research C for DE and. FDA revises labels of SGLT2 inhibitors for diabetes to include warnings about too much acid in the blood and serious urinary tract infections. FDA 2023.
[80] Thiruvenkatarajan V, Meyer EJ, Nanjappa N, Van Wijk RM, Jesudason D. Perioperative diabetic ketoacidosis associated with sodium-glucose co-transporter-2 inhibitors: a systematic review. Br J Anaesth 2019;123:27–36. ttps://doi.org/10.1016/j.bja.2019.03.028.
[81] Ruste M, Schweizer R, Groisne L, Fellahi J-L, Jacquet-Lagrèze M. Sodium-glucose cotransporter-2 inhibitors in non-diabetic patients: is there a perioperative risk of euglycaemic ketoacidosis. British Journal of Anaesthesia 2024;132:435–6. https://doi.org/10.1016/j.bja.2023.11.015.
[82] Nasa P, Chaudhary S, Shrivastava PK, Singh A. Euglycemic diabetic ketoacidosis: A missed diagnosis. World J Diabetes 2021;12:514–23. https://doi.org/10.4239/wjd.v12.i5.514.
[83] Palmer BF, Clegg DJ, Taylor SI, Weir MR. Diabetic ketoacidosis, sodium glucose transporter-2 inhibitors and the kidney. J Diabetes Complications 2016;30:1162–6. https://doi.org/10.1016/j.jdiacomp.2016.05.008.
[84] Peters AL, Buschur EO, Buse JB, Cohan P, Diner JC, Hirsch IB. Euglycemic Diabetic Ketoacidosis: A Potential Complication of Treatment With Sodium-Glucose Cotransporter 2 Inhibition. Diabetes Care 2015;38:1687–93. https://doi.org/10.2337/dc15-0843.
[85] Wang Y, Desai M, Ryan PB, DeFalco FJ, Schuemie MJ, Stang PE, et al. Incidence of diabetic ketoacidosis among patients with type 2 diabetes mellitus treated with SGLT2 inhibitors and other antihyperglycemic agents. Diabetes Res Clin Pract 2017;128:83–90.
https://doi.org/10.1016/j.diabres.2017.04.004.
[86] Douros A, Lix LM, Fralick M, Dell’Aniello S, Shah BR, Ronksley PE, et al. Sodium-Glucose Cotransporter-2 Inhibitors and the Risk for Diabetic Ketoacidosis : A Multicenter Cohort Study. Ann Intern Med 2020;173:417–25. https://doi.org/10.7326/M20-0289.
[87] Goldenberg RM, Berard LD, Cheng AYY, Gilbert JD, Verma S, Woo VC, et al. SGLT2 Inhibitorassociated Diabetic Ketoacidosis: Clinical Review and Recommendations for Prevention and Diagnosis. Clin Ther 2016;38:2654-2664.e1. https://doi.org/10.1016/j.clinthera.2016.11.002.
[88] Preoperative Cessation of SGLT2i. American College of Cardiology n.d. https://www.acc.org/LatestinCardiology/Articles/2022/10/07/17/21/http%3a%2f%2fwww.acc.org%2fLatestinCardiology%2fArticles%2f2022%2f10%2f07%2f17%2f21%2fPreoperative-Cessation-of-SGLT2i (accessed March 7, 2025).
[89] Steinhorn B, Cao S, Richter J, White R, Wiener-Kronish J. Risk of Euglycemic Diabetic Ketoacidosis in Patients Taking Sodium Glucose Transporter 2 Inhibitors Undergoing Endoscopies. Anesthesiology 2023;139:705–7. ttps://doi.org/10.1097/ALN.0000000000004719.
[90] Fritsch A, Meyer M, Blaustein RO, Trujillo ME, Kauh E, Roessig L, et al. Clinical Pharmacokinetic and Pharmacodynamic Profile of Vericiguat. Clin Pharmacokinet 2024;63:751–71. https://doi.org/10.1007/s40262-024-01384-1.
[91] Gheorghiade M, Marti CN, Sabbah HN, Roessig L, Greene SJ, Böhm M, et al. Soluble guanylate cyclase: a potential therapeutic target for heart failure. Heart Fail Rev 2013;18:123–34. https://doi.org/10.1007/s10741-012-9323-1.
[92] Sandner P, Follmann M, Becker-Pelster E, Hahn MG, Meier C, Freitas C, et al. Soluble GC stimulators and activators: Past, resent and future. Br J Pharmacol 2024;181:4130–51. https://doi.org/10.1111/bph.15698.
[93] Armstrong PW, Pieske B, Anstrom KJ, Ezekowitz J, Hernandez AF, Butler J, et al. Vericiguat in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med 2020;382:1883–93. https://doi.org/10.1056/NEJMoa1915928.
[94] Gheorghiade M, Greene SJ, Butler J, Filippatos G, Lam CSP, Maggioni AP, et al. Effect of Vericiguat, a Soluble Guanylate Cyclase Stimulator, on Natriuretic Peptide Levels in Patients With Worsening Chronic Heart Failure and Reduced Ejection Fraction: The SOCRATES-REDUCED Randomized Trial. JAMA 2015;314:2251–62. https://doi.org/10.1001/jama.2015.15734.
[95] VERQUVO (vériciguat) – Insuffisance cardiaque chronique symptomatique. Haute Autorité de Santé n.d. https://www.has-sante.fr/jcms/p_3324316/fr/verquvo-vericiguat-insuffisancecardiaque-chronique-symptomatique (accessed March 25, 2025).
[96] Cornell S. A review of GLP-1 receptor agonists in type 2 diabetes: A focus on the mechanism of action of once-weekly agents. J Clin Pharm Ther 2020;45 Suppl 1:17–27. https://doi.org/10.1111/jcpt.13230.
[97] Shyangdan DS, Royle P, Clar C, Sharma P, Waugh N, Snaith A. Glucagon-like peptide analogues for type 2 diabetes mellitus. Cochrane Database Syst Rev 2011;2011:CD006423. https://doi.org/10.1002/14651858.CD006423.pub2.
[98] Trujillo J. Safety and tolerability of once-weekly GLP-1 receptor agonists in type 2 diabetes. J Clin Pharm Ther 2020;45 Suppl 1:43–60. https://doi.org/10.1111/jcpt.13225.
[99] Sun F, Wu S, Guo S, Yu K, Yang Z, Li L, et al. Impact of GLP-1 receptor agonists on blood pressure, heart rate and hypertension among patients with type 2 diabetes: A systematic review and network meta-analysis. Diabetes Res Clin Pract 2015;110:26–37.
https://doi.org/10.1016/j.diabres.2015.07.015.
[100] Potts JE, Gray LJ, Brady EM, Khunti K, Davies MJ, Bodicoat DH. The Effect of Glucagon-Like Peptide 1 Receptor Agonists on Weight Loss in Type 2 Diabetes: A Systematic Review and Mixed Treatment Comparison Meta-Analysis. PLoS One 2015;10:e0126769. https://doi.org/10.1371/journal.pone.0126769.
[101] Unni S, Wittbrodt E, Ma J, Schauerhamer M, Hurd J, Ruiz-Negrón N, et al. Comparative effectiveness of once-weekly glucagon-like peptide-1 receptor agonists with regard to 6-month glycaemic control and weight outcomes in patients with type 2 diabetes. Diabetes Obes Metab 2018;20:468–73. https://doi.org/10.1111/dom.13107.
[102] Wilding JPH, Batterham RL, Calanna S, Davies M, Van Gaal LF, Lingvay I, et al. Once-Weekly Semaglutide in Adults with Overweight or Obesity. N Engl J Med 2021;384:989–1002. https://doi.org/10.1056/NEJMoa2032183.
[103] Palmer SC, Tendal B, Mustafa RA, Vandvik PO, Li S, Hao Q, et al. Sodium-glucose cotransporter protein-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists for type 2 diabetes: systematic review and network meta-analysis of randomised controlled trials. BMJ 2021;372:m4573. https://doi.org/10.1136/bmj.m4573.
[104] Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebocontrolled trial. Lancet 2019;394:121–30. https://doi.org/10.1016/S0140-6736(19)31149-3.
[105] Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med 2016;375:1834–44. https://doi.org/10.1056/NEJMoa1607141.
[106] Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JFE, Nauck MA, et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2016;375:311–22. https://doi.org/10.1056/NEJMoa1603827.
[107] Sattar N, Lee MMY, Kristensen SL, Branch KRH, Del Prato S, Khurmi NS, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol 2021;9:653–62. https://doi.org/10.1016/S2213-8587(21)00203-5.
[108] Ban K, Noyan-Ashraf MH, Hoefer J, Bolz S-S, Drucker DJ, Husain M. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 2008;117:2340–50. https://doi.org/10.1161/CIRCULATIONAHA.107.739938.
[109] Baggio LL, Yusta B, Mulvihill EE, Cao X, Streutker CJ, Butany J, et al. GLP-1 Receptor Expression Within the Human Heart. Endocrinology 2018;159:1570–84. https://doi.org/10.1210/en.2018-00004.
[110] Nauck MA, Meier JJ, Cavender MA, Abd El Aziz M, Drucker DJ. Cardiovascular Actions and Clinical Outcomes With Glucagon-Like Peptide-1 Receptor Agonists and Dipeptidyl Peptidase-4 Inhibitors. Circulation 2017;136:849–70. https://doi.org/10.1161/CIRCULATIONAHA.117.028136.
[111] Tuttle KR, Lakshmanan MC, Rayner B, Busch RS, Zimmermann AG, Woodward DB, et al. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): a multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol 2018;6:605–17. https://doi.org/10.1016/S2213-8587(18)30104-9.
[112] Jorsal A, Kistorp C, Holmager P, Tougaard RS, Nielsen R, Hänselmann A, et al. Effect of liraglutide, a glucagon-like peptide-1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE)-a multicentre, double-blind, randomised, placebo-controlled trial. Eur J Heart Fail 2017;19:69–77. https://doi.org/10.1002/ejhf.657.
[113] Margulies KB, Hernandez AF, Redfield MM, Givertz MM, Oliveira GH, Cole R, et al. Effects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial. JAMA 2016;316:500–8.
https://doi.org/10.1001/jama.2016.10260.
[114] Kosiborod MN, Abildstrøm SZ, Borlaug BA, Butler J, Rasmussen S, Davies M, et al. Semaglutide in Patients with Heart Failure with Preserved Ejection Fraction and Obesity. N Engl J Med 2023;389:1069–84. https://doi.org/10.1056/NEJMoa2306963.
[115] Hulst AH, Visscher MJ, Godfried MB, Thiel B, Gerritse BM, Scohy TV, et al. Liraglutide for perioperative management of hyperglycaemia in cardiac surgery patients: a multicentre randomized superiority trial. Diabetes Obes Metab 2020;22:557–65.
https://doi.org/10.1111/dom.13927.
[116] Polderman J a. W, van Steen SCJ, Thiel B, Godfried MB, Houweling PL, Hollmann MW, et al. Peri-operative management of patients with type-2 diabetes mellitus undergoing non-cardiac surgery using liraglutide, glucose-insulin-potassium infusion or intravenous insulin bolus regimens: a randomised controlled trial. Anaesthesia 2018;73:332–9. https://doi.org/10.1111/anae.14180.
[117] Milder DA, Milder TY, Liang SS, Kam PCA. Glucagon-like peptide-1 receptor agonists: a narrative review of clinical pharmacology and implications for peri-operative practice. Anaesthesia 2024;79:735–47. https://doi.org/10.1111/anae.16306.
[118] Agonistes du récepteurs au GLP1 n.d. https://pharmacomedicale.org/medicaments/parspecialites/item/agonistes-du-recepteurs-au-glp1 (accessed March 20, 2025).
[119] Sun F, Chai S, Yu K, Quan X, Yang Z, Wu S, et al. Gastrointestinal adverse events of glucagonlike peptide-1 receptor agonists in patients with type 2 diabetes: a systematic review and network meta-analysis. Diabetes Technol Ther 2015;17:35–42. https://doi.org/10.1089/dia.2014.0188.
[120] Pratley R, Nauck M, Bailey T, Montanya E, Cuddihy R, Filetti S, et al. One year of liraglutide treatment offers sustained and more effective glycaemic control and weight reduction compared with sitagliptin, both in combination with metformin, in patients with type 2 diabetes: a randomised, parallel-group, open-label trial. Int J Clin Pract 2011;65:397–407. https://doi.org/10.1111/j.1742-1241.2011.02656.x.
[121] Joshi GP. Anesthetic Considerations in Adult Patients on Glucagon-Like Peptide-1 Receptor Agonists: Gastrointestinal Focus. Anesth Analg 2024;138:216–20. https://doi.org/10.1213/ANE.0000000000006810.
[122] Are Serious Anesthesia Risks of Semaglutide and Other GLP-1 Agonists Under-Recognized? Case Reports of Retained Solid Gastric Contents in Patients Undergoing Anesthesia. Anesthesia Patient Safety Foundation n.d. https://www.apsf.org/article/are-serious-anesthesia-risks-ofsemaglutide-and-other-glp-1-agonists-under-recognized/ (accessed March 20, 2025).
[123] Alter C. Mise au point traitement du diabète (agonistes récepteurs GLP1) et anesthésie – La SFAR. Société Française d’Anesthésie et de Réanimation 2023. https://dev.sfar.org/mise-aupoint-traitement-du-diabete-agonistes-recepteurs-glp1-et-anesthesie/ (accessed March 15, 2025).
[124] American Society of Anesthesiologists Consensus-Based Guidance on Preoperative Management of Patients (Adults and Children) on Glucagon-Like Peptide-1 (GLP-1) Receptor Agonists n.d. https://www.asahq.org/about-asa/newsroom/news-releases/2023/06/americansociety-of-anesthesiologists-consensus-based-guidance-on-preoperative (accessed March 20,
2025).
[125] Silveira SQ, da Silva LM, de Campos Vieira Abib A, de Moura DTH, de Moura EGH, Santos LB, et al. Relationship between perioperative semaglutide use and residual gastric content: A retrospective analysis of patients undergoing elective upper endoscopy. J Clin Anesth 2023;87:111091. https://doi.org/10.1016/j.jclinane.2023.111091.
[126] Sen S, Potnuru PP, Hernandez N, Goehl C, Praestholm C, Sridhar S, et al. Glucagon-Like Peptide-1 Receptor Agonist Use and Residual Gastric Content Before Anesthesia. JAMA Surg 2024;159:660–7. https://doi.org/10.1001/jamasurg.2024.0111.
[127] Benhamou D, Nicolescu-Cardagi B, Cheisson G, Cosson E. Gestion du patient diabétique en péri-opératoire – La SFAR. Société Française d’Anesthésie et de Réanimation 2018. https://dev.sfar.org/gestion-du-patient-diabetique/ (accessed February 3, 2025).
[128] Kindel TL, Wang AY, Wadhwa A, Schulman AR, Sharaiha RZ, Kroh M, et al. Multisociety Clinical Practice Guidance for the Safe Use of Glucagon-like Peptide-1 Receptor Agonists in the Perioperative Period. Clin Gastroenterol Hepatol 2024:S1542 3565(24)00910-8. https://doi.org/10.1016/j.cgh.2024.10.003.
[129] Joshi GP, LaMasters T, Kindel TL. Preprocedure Care of Patients on Glucagon-like Peptide-1 Receptor Agonists: A Multisociety Clinical Practice Guidance. Anesthesiology 2024;141:1208–9. https://doi.org/10.1097/ALN.0000000000005231.
[130] Levy N, Lirk P. Regional anaesthesia in patients with diabetes. Anaesthesia 2021;76 Suppl 1:127–35. https://doi.org/10.1111/anae.15258.
[131] Storgaard H, Cold F, Gluud LL, Vilsbøll T, Knop FK. Glucagon-like peptide-1 receptor agonists and risk of acute pancreatitis in patients with type 2 diabetes. Diabetes Obes Metab 2017;19:906–8. https://doi.org/10.1111/dom.12885.
[132] Monami M, Nreu B, Scatena A, Cresci B, Andreozzi F, Sesti G, et al. Safety issues with glucagon-like peptide-1 receptor agonists (pancreatitis, pancreatic cancer and cholelithiasis): Data from randomized controlled trials. Diabetes Obes Metab 2017;19:1233–41.
https://doi.org/10.1111/dom.12926.
[133] Agency EM. Points clés de la réunion du Comité d’évaluation des risques en matière de pharmacovigilance (PRAC) du 8 au 11 avril 2024 | Agence européenne des médicaments (EMA) 2010. https://www.ema.europa.eu/en/news/meeting-highlights-pharmacovigilance-riskassessment-committee-prac-8-11-april-2024 (accessed March 15, 2025).
[134] Actualité – Analogues du GLP-1 : point sur la surveillance des effets indésirables graves et mésusages. ANSM n.d. https://ansm.sante.fr/actualites/analogues-du-glp-1-point-sur-lasurveillance-des-effets-indesirables-graves-et-mesusages (accessed March 15, 2025).
[135] Sitagliptine : substance active à effet thérapeutique. VIDAL n.d. https://www.vidal.fr/medicaments/substances/sitagliptine-22893.html (accessed March 20, 2025).
[136] JANUVIA (sitagliptine) – Diabète de type 2. Haute Autorité de Santé n.d. https://www.hassante.fr/jcms/p_3411728/fr/januvia-sitagliptine-diabete-de-type-2 (accessed March 25, 2025).
[137] Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 2013;369:1317–2010. https://doi.org/10.1056/NEJMoa1307684.
[138] White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 2013;369:1327–35. https://doi.org/10.1056/NEJMoa1305889.
[139] Green JB, Bethel MA, Armstrong PW, Buse JB, Engel SS, Garg J, et al. Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2015;373:232–42. https://doi.org/10.1056/NEJMoa1501352.
[140] Rosenstock J, Kahn SE, Johansen OE, Zinman B, Espeland MA, Woerle HJ, et al. Effect of Linagliptin vs Glimepiride on Major Adverse Cardiovascular Outcomes in Patients With Type 2 Diabetes: The CAROLINA Randomized Clinical Trial. JAMA 2019;322:1155–66. https://doi.org/10.1001/jama.2019.13772.
[141] McMurray JJV, Ponikowski P, Bolli GB, Lukashevich V, Kozlovski P, Kothny W, et al. Effects of Vildagliptin on Ventricular Function in Patients With Type 2 Diabetes Mellitus and Heart Failure: A Randomized Placebo-Controlled Trial. JACC Heart Fail 2018;6:8–17. https://doi.org/10.1016/j.jchf.2017.08.004.
[142] Sinha B, Ghosal S. Meta-analyses of the effects of DPP-4 inhibitors, SGLT2 inhibitors and GLP1 receptor analogues on cardiovascular death, myocardial infarction, stroke and hospitalization for heart failure. Diabetes Res Clin Pract 2019;150:8–16.
https://doi.org/10.1016/j.diabres.2019.02.014.
[143] Filion KB, Azoulay L, Platt RW, Dahl M, Dormuth CR, Clemens KK, et al. A Multicenter Observational Study of Incretin-based Drugs and Heart Failure. N Engl J Med 2016;374:1145–54. https://doi.org/10.1056/NEJMoa1506115.
[144] Alfayez OM, Al Yami MS, Alshibani M, Fallatah SB, Al Khushaym NM, Alsheikh R, et al. Network meta-analysis of nine large cardiovascular outcome trials of new antidiabetic drugs. Prim Care Diabetes 2019;13:204–11. https://doi.org/10.1016/j.pcd.2019.01.003.
[145] Incrétinomimétiques : pas de surrisque de cancer du pancréas selon une vaste étude de l’ANSM. VIDAL 2016. https://www.vidal.fr/actualites/20555-incretinomimetiques-pas-de-surrisque-de-cancer-du-pancreas-selon-une-vaste-etude-de-l-ansm.html (accessed March 25, 2025).
[146] Men P, He N, Song C, Zhai S. Dipeptidyl peptidase-4 inhibitors and risk of arthralgia: A systematic review and meta-analysis. Diabetes Metab 2017;43:493–500. https://doi.org/10.1016/j.diabet.2017.05.013.
[147] Ling J, Cheng P, Ge L, Zhang D-H, Shi A-C, Tian J-H, et al. The efficacy and safety of dipeptidyl peptidase-4 inhibitors for type 2 diabetes: a Bayesian network meta-analysis of 58 randomized controlled trials. Acta Diabetol 2019;56:249–72. https://doi.org/10.1007/s00592-018-1222-z.
[148] Yang W, Cai X, Han X, Ji L. DPP-4 inhibitors and risk of infections: a meta-analysis of randomized controlled trials. Diabetes Metab Res Rev 2016;32:391–404. https://doi.org/10.1002/dmrr.2723.
[149] Dicembrini I, Montereggi C, Nreu B, Mannucci E, Monami M. Pancreatitis and pancreatic cancer in patientes treated with Dipeptidyl Peptidase-4 inhibitors: An extensive and updated meta-analysis of randomized controlled trials. Diabetes Res Clin Pract 2020;159:107981. https://doi.org/10.1016/j.diabres.2019.107981.
[150] Silverii GA, Dicembrini I, Nreu B, Montereggi C, Mannucci E, Monami M. Bullous pemphigoid and dipeptidyl peptidase-4 inhibitors: a meta-analysis of randomized controlled trials. Endocrine 2020;69:504–7. https://doi.org/10.1007/s12020-020-02272-x.
[151] Duggan EW, Carlson K, Umpierrez GE. Perioperative Hyperglycemia Management: An Update. Anesthesiology 2017;126:547. https://doi.org/10.1097/ALN.0000000000001515.
[152] Crowley K, Scanaill PÓ, Hermanides J, Buggy DJ. Current practice in the perioperative management of patients with diabetes mellitus: a narrative review. Br J Anaesth 2023;131:242–2010. https://doi.org/10.1016/j.bja.2023.02.039.
[153] Faris R, Flather M, Purcell H, Henein M, Poole-Wilson P, Coats A. Current evidence supporting the role of diuretics in heart failure: a meta analysis of randomised controlled trials. Int J Cardiol 2002;82:149–58. https://doi.org/10.1016/s0167-5273(01)00600-3.
[154] Mullens W, Damman K, Harjola V-P, Mebazaa A, Rocca H-PB-L, Martens P, et al. The use of diuretics in heart failure with congestion — a position statement from the Heart Failure Association of the European Society of Cardiology. European Journal of Heart Failure 2019;21:137–55. https://doi.org/10.1002/ejhf.1369.
[155] Komajda M, Follath F, Swedberg K, Cleland J, Aguilar JC, Cohen-Solal A, et al. The EuroHeart Failure Survey programme–a survey on the quality of care among patients with heart failure in Europe. Part 2: treatment. Eur Heart J 2003;24:464–74. https://doi.org/10.1016/s0195- 668x(02)00700-5.
[156] Rohde LE, Rover MM, Figueiredo Neto JA, Danzmann LC, Bertoldi EG, Simões MV, et al. Shortterm diuretic withdrawal in stable outpatients with mild heart failure and no fluid retention receiving optimal therapy: a double-blind, multicentre, randomized trial. Eur Heart J 2019;40:3605–12. https://doi.org/10.1093/eurheartj/ehz554.
[157] Ellison DH. Diuretic therapy and resistance in congestive heart failure. Cardiology 2001;96:132–43. https://doi.org/10.1159/000047397.
[158] Tagawa M, Ogata A, Hamano T. Pre- and/or Intra-Operative Prescription of Diuretics, but Not Renin-Angiotensin-System Inhibitors, Is Significantly Associated with Acute Kidney Injury after Non-Cardiac Surgery: A Retrospective Cohort Study. PLOS ONE 2015;10:e0132507. https://doi.org/10.1371/journal.pone.0132507.
[159] Hayashi M, Tsutamoto T, Wada A, Tsutsui T, Ishii C, Ohno K, et al. Immediate administration of mineralocorticoid receptor antagonist spironolactone prevents post-infarct left ventricular remodeling associated with suppression of a marker of myocardial collagen synthesis in patients with first anterior acute myocardial infarction. Circulation 2003;107:2559–65. https://doi.org/10.1161/01.CIR.0000068340.96506.0F.
[160] Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 1999;341:709–17.
https://doi.org/10.1056/NEJM199909023411001.
[161] Zannad F, McMurray JJV, Krum H, van Veldhuisen DJ, Swedberg K, Shi H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med 2011;364:11–21. https://doi.org/10.1056/NEJMoa1009492.
[162] Pitt B, Filippatos G, Agarwal R, Anker SD, Bakris GL, Rossing P, et al. Cardiovascular Events with Finerenone in Kidney Disease and Type 2 Diabetes. N Engl J Med 2021;385:2252–63. https://doi.org/10.1056/NEJMoa2110956.
[163] Agarwal R, Filippatos G, Pitt B, Anker SD, Rossing P, Joseph A, et al. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. Eur Heart J 2022;43:474–84.
https://doi.org/10.1093/eurheartj/ehab777.
[164] Clemente-Moragón A, Gómez M, Villena-Gutiérrez R, Lalama DV, García-Prieto J, Martínez F, et al. Metoprolol exerts a non-class effect against ischaemia-reperfusion injury by abrogating exacerbated inflammation. Eur Heart J 2020;41:4425–40.
https://doi.org/10.1093/eurheartj/ehaa733.
[165] The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 1999;353:9– 13.
[166] Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet 1999;353:2001–7.
[167] Packer M, Coats AJ, Fowler MB, Katus HA, Krum H, Mohacsi P, et al. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med 2001;344:1651–8. https://doi.org/10.1056/NEJM200105313442201.
[168] Flather MD, Shibata MC, Coats AJS, Van Veldhuisen DJ, Parkhomenko A, Borbola J, et al. Randomized trial to determine the effect of nebivolol on mortality and cardiovascular hospital admission in elderly patients with heart failure (SENIORS). Eur Heart J 2005;26:215–25. https://doi.org/10.1093/eurheartj/ehi115.
[169] Willenheimer R, van Veldhuisen DJ, Silke B, Erdmann E, Follath F, Krum H, et al. Effect on survival and hospitalization of initiating treatment for chronic heart failure with bisoprolol followed by enalapril, as compared with the opposite sequence: results of the randomized Cardiac Insufficiency Bisoprolol Study (CIBIS) III. Circulation 2005;112:2426–35. https://doi.org/10.1161/CIRCULATIONAHA.105.582320.
[170] Cleland JGF, Bunting KV, Flather MD, Altman DG, Holmes J, Coats AJS, et al. Beta-blockers for heart failure with reduced, mid-range, and preserved ejection fraction: an individual patientlevel analysis of double-blind randomized trials. Eur Heart J 2018;39:26–35. https://doi.org/10.1093/eurheartj/ehx564.
[171] Ferraris A, Fellahi J-L. Les bêtabloquants périopératoires : amis ou ennemis ? Le Praticien En Anesthésie Réanimation 2020;24:69–76. https://doi.org/10.1016/j.pratan.2020.04.001.
[172] London MJ, Hur K, Schwartz GG, Henderson WG. Association of perioperative β-blockade with mortality and cardiovascular morbidity following major noncardiac surgery. JAMA 2013;309:1704–13. https://doi.org/10.1001/jama.2013.4135.
[173] Wallace AW, Au S, Cason BA. Association of the pattern of use of perioperative β-blockade and postoperative mortality. Anesthesiology 2010;113:794–805. https://doi.org/10.1097/ALN.0b013e3181f1c061.
[174] Kertai MD, Cooter M, Pollard RJ, Buhrman W, Aronson S, Mathew JP, et al. Is Compliance With Surgical Care Improvement Project Cardiac (SCIP-Card-2) Measures for Perioperative βBlockers Associated With Reduced Incidence of Mortality and Cardiovascular-Related Critical Quality Indicators After Noncardiac Surgery? Anesth Analg 2018;126:1829–38.
https://doi.org/10.1213/ANE.0000000000002577.
[175] POISE Study Group, Devereaux PJ, Yang H, Yusuf S, Guyatt G, Leslie K, et al. Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): a randomised controlled trial. Lancet 2008;371:1839–47. https://doi.org/10.1016/S0140- 6736(08)60601-7.
[176] Oesterle A, Weber B, Tung R, Choudhry NK, Singh JP, Upadhyay GA. Preventing Postoperative Atrial Fibrillation After Noncardiac Surgery: A Meta-analysis. Am J Med 2018;131:795-804.e5. https://doi.org/10.1016/j.amjmed.2018.01.032.
[177] London MJ, Hur K, Schwartz GG, Henderson WG. Association of perioperative β-blockade with mortality and cardiovascular morbidity following major noncardiac surgery. JAMA 2013;309:1704–13. https://doi.org/10.1001/jama.2013.4135.
[178] Lindenauer PK, Pekow P, Wang K, Mamidi DK, Gutierrez B, Benjamin EM. Perioperative betablocker therapy and mortality after major noncardiac surgery. N Engl J Med 2005;353:349–61. https://doi.org/10.1056/NEJMoa041895.
[179] Ashes C, Judelman S, Wijeysundera DN, Tait G, Mazer CD, Hare GMT, et al. Selective β1- antagonism with bisoprolol is associated with fewer postoperative strokes than atenolol or metoprolol: a single-center cohort study of 44,092 consecutive patients. Anesthesiology 2013;119:777–87. https://doi.org/10.1097/ALN.0b013e3182a17f12.
[180] Wallace AW, Au S, Cason BA. Perioperative β-blockade: atenolol is associated with reduced mortality when compared to metoprolol. Anesthesiology 2011;114:824–36. https://doi.org/10.1097/ALN.0b013e3182110e83.
[181] Wijeysundera DN, Beattie WS, Wijeysundera HC, Yun L, Austin PC, Ko DT. Duration of preoperative β-blockade and outcomes after major elective noncardiac surgery. Can J Cardiol 2014;30:217–23. https://doi.org/10.1016/j.cjca.2013.10.011.
[182] Blessberger H, Lewis SR, Pritchard MW, Fawcett LJ, Domanovits H, Schlager O, et al. Perioperative beta-blockers for preventing surgery-related mortality and morbidity in adults undergoing non-cardiac surgery. Cochrane Database Syst Rev 2019;9:CD013438.
https://doi.org/10.1002/14651858.CD013438.
[183] Gosgnach M, Aymard G, Huraux C, Fléron MH, Coriat P, Diquet B. Atenolol administration via a nasogastric tube after abdominal surgery: an unreliable route. Anesth Analg 2005;100:137–40. https://doi.org/10.1213/01.ANE.0000140238.79041.73.
[184] Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist C, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC)
Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J 2021;42:373–498. https://doi.org/10.1093/eurheartj/ehaa612.
[185] Gibelin P. Insuffisance cardiaque : traitement médical – ClinicalKey Now n.d. https://www.clinicalkey.com/now/fr/content/51-s2.0-S1166456818289111#hl0000937 (accessed March 27, 2025).
[186] Heeneman S, Sluimer JC, Daemen MJAP. Angiotensin-converting enzyme and vascular remodeling. Circ Res 2007;101:441–54. https://doi.org/10.1161/CIRCRESAHA.107.148338.
[187] Niarchos AP, Pickering TG, Morganti A, Laragh JH. Plasma catecholamines and cardiovascular responses during converting enzyme inhibition in normotensive and hypertensive man. Clin Exp Hypertens A 1982;4:761–89. https://doi.org/10.3109/10641968209061612.
[188] Zafari AM, Ushio-Fukai M, Akers M, Yin Q, Shah A, Harrison DG, et al. Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy. Hypertension 1998;32:488–95. https://doi.org/10.1161/01.hyp.32.3.488.
[189] Amann B, Tinzmann R, Angelkort B. ACE inhibitors improve diabetic nephropathy through suppression of renal MCP-1. Diabetes Care 2003;26:2421–5. https://doi.org/10.2337/diacare.26.8.2421.
[190] Bangalore S, Kumar S, Messerli FH. Angiotensin-converting enzyme inhibitor associated cough: deceptive information from the Physicians’ Desk Reference. Am J Med 2010;123:1016–2010. https://doi.org/10.1016/j.amjmed.2010.06.014.
[191] Haymore BR, Yoon J, Mikita CP, Klote MM, DeZee KJ. Risk of angioedema with angiotensin receptor blockers in patients with prior angioedema associated with angiotensin-converting enzyme inhibitors: a meta-analysis. Ann Allergy Asthma Immunol 2008;101:495–9. https://doi.org/10.1016/S1081-1206(10)60288-8.
[192] CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med 1987;316:1429–35. https://doi.org/10.1056/NEJM198706043162301.
[193] SOLVD Investigators, Yusuf S, Pitt B, Davis CE, Hood WB, Cohn JN. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 1991;325:293–302. https://doi.org/10.1056/NEJM199108013250501.
[194] SOLVD Investigators, Yusuf S, Pitt B, Davis CE, Hood WB, Cohn JN. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med 1992;327:685–91.
https://doi.org/10.1056/NEJM199209033271003.
[195] Cohn JN, Johnson G, Ziesche S, Cobb F, Francis G, Tristani F, et al. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N Engl J Med 1991;325:303–10. https://doi.org/10.1056/NEJM199108013250502.
[196] Pfeffer MA, Braunwald E, Moyé LA, Basta L, Brown EJ, Cuddy TE, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N Engl J Med 1992;327:669–77. https://doi.org/10.1056/NEJM199209033271001.
[197] Hall AS, Winter C, Bogle SM, Mackintosh AF, Murray GD, Ball SG. The Acute Infarction Ramipril Efficacy (AIRE) Study: rationale, design, organization, and outcome definitions. J Cardiovasc Pharmacol 1991;18 Suppl 2:S105-109.
[198] The TRAndolapril Cardiac Evaluation (TRACE) study: rationale, design, and baseline characteristics of the screened population. The Trace Study Group. Am J Cardiol 1994;73:44C50C. https://doi.org/10.1016/0002-9149(94)90623-8.
[199] McAlister FA, Stewart S, Ferrua S, McMurray JJJV. Multidisciplinary strategies for the management of heart failure patients at high risk for admission: a systematic review of randomized trials. J Am Coll Cardiol 2004;44:810–9. https://doi.org/10.1016/j.jacc.2004.05.055.
[200] Flather MD, Yusuf S, Køber L, Pfeffer M, Hall A, Murray G, et al. Long-term ACE-inhibitor therapy in patients with heart failure or left-ventricular dysfunction: a systematic overview of data from individual patients. ACE-Inhibitor Myocardial Infarction Collaborative Group. Lancet 2000;355:1575–81. https://doi.org/10.1016/s0140-6736(00)02212-1.
[201] Pitt B, Segal R, Martinez FA, Meurers G, Cowley AJ, Thomas I, et al. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). Lancet 1997;349:747–52. https://doi.org/10.1016/s0140-6736(97)01187-2.
[202] McKelvie RS, Yusuf S, Pericak D, Avezum A, Burns RJ, Probstfield J, et al. Comparison of candesartan, enalapril, and their combination in congestive heart failure: randomized evaluation of strategies for left ventricular dysfunction (RESOLVD) pilot study. The RESOLVD Pilot Study Investigators. Circulation 1999;100:1056–64. https://doi.org/10.1161/01.cir.100.10.1056.
[203] Cohn JN, Tognoni G, Valsartan Heart Failure Trial Investigators. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med 2001;345:1667–75. https://doi.org/10.1056/NEJMoa010713.
[204] Young JB, Dunlap ME, Pfeffer MA, Probstfield JL, Cohen-Solal A, Dietz R, et al. Mortality and morbidity reduction with Candesartan in patients with chronic heart failure and left ventricular systolic dysfunction: results of the CHARM low-left ventricular ejection fraction trials. Circulation 2004;110:2618–26. https://doi.org/10.1161/01.CIR.0000146819.43235.A9.
[205] Granger CB, McMurray JJV, Yusuf S, Held P, Michelson EL, Olofsson B, et al. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function intolerant to angiotensin-converting-enzyme inhibitors: the CHARM-Alternative trial. Lancet 2003;362:772–6. https://doi.org/10.1016/S0140-6736(03)14284-5.
[206] Cleland JGF, Tendera M, Adamus J, Freemantle N, Polonski L, Taylor J, et al. The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur Heart J 2006;27:2338–45. https://doi.org/10.1093/eurheartj/ehl250.
[207] Yusuf S, Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJV, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet 2003;362:777–81. https://doi.org/10.1016/S0140-6736(03)14285-7.
[208] Massie BM, Carson PE, McMurray JJ, Komajda M, McKelvie R, Zile MR, et al. Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med 2008;359:2456–67. https://doi.org/10.1056/NEJMoa0805450.
[209] Bertrand M, Godet G, Meersschaert K, Brun L, Salcedo E, Coriat P. Should the angiotensin II antagonists be discontinued before surgery? Anesth Analg 2001;92:26–30. https://doi.org/10.1097/00000539-200101000-00006.
[210] Comfere T, Sprung J, Kumar MM, Draper M, Wilson DP, Williams BA, et al. Angiotensin system inhibitors in a general surgical population. Anesth Analg 2005;100:636–44. https://doi.org/10.1213/01.ANE.0000146521.68059.A1.
[211] Brabant SM, Bertrand M, Eyraud D, Darmon PL, Coriat P. The hemodynamic effects of anesthetic induction in vascular surgical patients chronically treated with angiotensin II receptor antagonists. Anesth Analg 1999;89:1388–92. https://doi.org/10.1097/00000539-199912000-00011.
[212] Mascha EJ, Yang D, Weiss S, Sessler DI. Intraoperative Mean Arterial Pressure Variability and 30-day Mortality in Patients Having Noncardiac Surgery. Anesthesiology 2015;123:79–91. https://doi.org/10.1097/ALN.0000000000000686.
[213] Walsh M, Devereaux PJ, Garg AX, Kurz A, Turan A, Rodseth RN, et al. Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery: toward an empirical definition of hypotension. Anesthesiology 2013;119:507–15. https://doi.org/10.1097/ALN.0b013e3182a10e26.
[214] Gregory A, Stapelfeldt WH, Khanna AK, Smischney NJ, Boero IJ, Chen Q, et al. Intraoperative Hypotension Is Associated With Adverse Clinical Outcomes After Noncardiac Surgery. Anesth Analg 2021;132:1654–65. https://doi.org/10.1213/ANE.0000000000005250.
[215] Roshanov PS, Rochwerg B, Patel A, Salehian O, Duceppe E, Belley-Côté EP, et al. Withholding versus Continuing Angiotensin-converting Enzyme Inhibitors or Angiotensin II Receptor Blockers before Noncardiac Surgery: An Analysis of the Vascular events In noncardiac Surgery patIents cOhort evaluatioN Prospective Cohort. Anesthesiology 2017;126:16–27. https://doi.org/10.1097/ALN.0000000000001404.
[216] Shiffermiller JF, Monson BJ, Vokoun CW, Beachy MW, Smith MP, Sullivan JN, et al. Prospective Randomized Evaluation of Preoperative Angiotensin-Converting Enzyme Inhibition (PREOP-ACEI). J Hosp Med 2018;13:661–7. https://doi.org/10.12788/jhm.3036.
[217] Hollmann C, Fernandes NL, Biccard BM. A Systematic Review of Outcomes Associated With Withholding or Continuing Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers Before Noncardiac Surgery. Anesth Analg 2018;127:678–87. https://doi.org/10.1213/ANE.0000000000002837.
[218] Ling Q, Gu Y, Chen J, Chen Y, Shi Y, Zhao G, et al. Consequences of continuing renin angiotensin aldosterone system antagonists in the preoperative period: a systematic review and meta-analysis. BMC Anesthesiol 2018;18:26. https://doi.org/10.1186/s12871-018-0487-7.
[219] Marcucci M, Painter TW, Conen D, Lomivorotov V, Sessler DI, Chan MTV, et al. HypotensionAvoidance Versus Hypertension-Avoidance Strategies in Noncardiac Surgery : An International Randomized Controlled Trial. Ann Intern Med 2023;176:605–14. https://doi.org/10.7326/M22-3157.
[220] Ackland GL, Patel A, Abbott TEF, Begum S, Dias P, Crane DR, et al. Discontinuation vs. continuation of renin-angiotensin system inhibition before non-cardiac surgery: the SPACE trial. Eur Heart J 2024;45:1146–55. https://doi.org/10.1093/eurheartj/ehad716.
[221] Alter C. Références et doi. Legrand M et al. Continuation vs Discontinuation of ReninAngiotensin System Inhibitors Before Major Noncardiac Surgery: The Stop-or-Not Randomized Clinical Trial. JAMA. 2024 Sep 24;332(12):970-978. DOI : 10.1001/jama.2024.17123 – La SFAR. Société Française d’Anesthésie et de Réanimation 2024. https://sfar.org/references-et-doilegrand-m-et-al-continuation-vs-discontinuation-of-renin-angiotensin-system-inhibitors-beforemajor-noncardiac-surgery-the-stop-or-not-randomized-clinical-trial-jama-2024-sep-24/ (accessed March 27, 2025).
[222] Fellahi J-L, Biais M, Abou-arab O. Optimisation hémodynamique périopératoire – Adulte dont obstétrique – – La SFAR. Société Française d’Anesthésie et de Réanimation 2024. https://sfar.org/optimisation-hemodynamique-perioperatoire-adulte-dont-obstetrique/ (accessed March 27, 2025).